Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice
نویسندگان
چکیده
The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.
منابع مشابه
Post-weaning epiphysiolysis causes distal femur dysplasia and foreshortened hindlimbs in fetuin-A-deficient mice
Fetuin-A / α2-Heremans-Schmid-glycoprotein (gene name Ahsg) is a systemic inhibitor of ectopic calcification. Due to its high affinity for calcium phosphate, fetuin-A is highly abundant in mineralized bone matrix. Foreshortened femora in fetuin-A-deficient Ahsg-/- mice indicated a role for fetuin-A in bone formation. We studied early postnatal bone development in fetuin-A-deficient mice and dis...
متن کاملChondrocyte-specific Knockout of Cbfβ Reveals the Indispensable Function of Cbfβ in Chondrocyte Maturation, Growth Plate Development and Trabecular Bone Formation in Mice
Despite years of research into bone formation, the mechanisms by which transcription factors specify growth plate development and trabecular bone formation remain unclear and the role of hypertrophic chondrocytes in trabeculae morphogenesis is controversial. To study the role of Core binding factor beta (Cbfβ) in postnatal cartilage development and endochondral bone formation, we generated chon...
متن کاملMice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis.
Mature osteoclasts specifically express the purple, band 5 isozyme (Acp 5) of tartrate-resistant acid phosphatase, a binuclear metalloenzyme that can generate reactive oxygen species. The function of Acp 5 was investigated by targeted disruption of the gene in mice. Animals homozygous for the null Acp 5 allele had progressive foreshortening and deformity of the long bones and axial skeleton but...
متن کاملRadiological and Histological Assessment of the Ossification Centers of Hind Limb after Hatching in Pigeon
Objective- The aim of this study was to determine the age of physical maturity and evaluation of radiology and histology of hind limb ossification centers in pigeon. Design- Fundamental study. Animals- 14 pigeons. Procedures- These pigeons were cultivated in identical and standard conditions and radiological and histological tests performed every 7 days to 91 days. Resu...
متن کاملThe Local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth
Recent studies revealed C-type natriuretic peptide (CNP) and its receptor, guanylyl cyclase-B (GC-B) are potent stimulators of endochondral bone growth. As they exist ubiquitously in body, we investigated the physiological role of the local CNP/GC-B in the growth plate on bone growth using cartilage-specific knockout mice. Bones were severely shorter in cartilage-specific CNP or GC-B knockout m...
متن کامل